MOLE LAB

Information:

*A mole of any substance	ce contains	particles.	
*A mole of lead will be	heavier or lighter	than a mole of oxygen because	

*The mass of a mole of a substance can be found using the

_____ of the substance.

*The units of molar mass are _____.

Procedure Part 1: Sugar in gum

- 1. Find the mass of a piece of gum (in wrapper) before chewing.
- 2. Chew the gum for 5 minutes.
- 3. Find the mass of the gum (on the wrapper) after chewing.
- 4. Throw the gum in the trash.
- a. Why was there a change in mass?

Mass before (g)	
Mass after (g)	
Change in mass (g)	

- b. The sugar has a chemical formula of $C_6H_{12}O_6$. Calculate the **molar mass** (g/mol).
- c. Calculate the number of **moles** of sugar you consumed while chewing the gum.
- d. Calculate the number of **molecules** of sugar you consumed while chewing the gum.

Procedure Part 2: Burning a candle

- 1. Find the before mass of a candle.
- 2. Light the candle and allow it to burn for 5 minutes. Do not play with the wax!
- 3. Without losing any of the wax, re-mass the candle.

Wax is a mixture of different hydrocarbons. We will assume the chemical formula for wax is $C_{25H_{52}}$.

Mass before (g)	
Mass after (g)	
Change in mass (g)	

- a. Find the **molar mass**. (g/mol)
- b. How many **atoms** of C are in one molecule of wax?
- c. How many **atoms** of H are in one molecule of wax?
- d. What % of the molar mass is Carbon? (total mass of C/molar mass) x 100%
- e. How many grams of Carbon would have been in the candle before burning?
- f. How many moles of wax were **used up** during burning?

Crayon

Chalk

Procedure Part 3: Molecules in your name

- 1. Find the mass of a crayon.
- 2. Write your full name on a piece of paper.
- 3. Find the mass of the crayon again.
- 4. Repeat steps #1-3 with the chalk.
- a. Find the **molar mass** of the crayon. (Made of wax- $C_{25}H_{52}$)

b.	How many moles of wax were in your name?
----	---

- c. How many molecules of wax were in your name?
- d. Find the **molar mass** of the chalk. (CaSO₄) (Did you know chalk isn't made from chalk anymore!!!)
 - e. How many moles of chalk were in your name?
 - f. How many molecules of chalk were in your name?
 - g. You should have used approximately the same mass of crayon and chalk when writing your name. Why were there **LESS molecules** of chalk used than crayon?

Procedure Part 4:

Measure the items and fill in the chart below.

Substance	Mass (g)	Molar Mass (g/mol)	# of moles
Aspirin			
(C ₉ H ₈ O ₄)			
Wood			
(CH ₂ O)			
Al Foil			
(AI)			

1. A substance has a mass of 90.1 grams and contains 3.0 x 10²³ molecules. Which of the 3 substances in the chart above is it? (Solve for moles first using the molecules given, then set up a ratio to find g in 1 mole.)

Substance	Mass (g) Before	Mass (g) After	Mass (g) Used
Crayon			
Chalk			