Math Skills for High School Physics       Name ________________

Adapted from web page courtesy of  David Carpenter, 2000 

Algebraic Formulas 

· general solutions to 1st degree equations

· general solutions to equations with powers

· specific solutions to equations

Graphing Data 

· fitting lines and curves to data

· choosing axes and scales

Deriving formulas from graphs 

· slope and intercept ==> equation of line

· general form of exponential functions (graphs and equations) recognizing graphs of exponential functions

· general form of inverse functions (graphs and equations, recognizing graphs of inverse functions

Scientific Notation 

· rules for scientific notation

· scientific notation with calculators [ x 10n is assumed, only multiplier and exponent are displayed]

Dimensional Analysis 

· almost every number in physics has a unit!

· can’t add or subtract different units

· units act like variables: they multiply, divide and cancel just like variables.

· units in a formula must simplify to match the units of the defined quantity.

· units can assist in finding algebraic errors.

Vector addition in two dimensions 

· coordinate transformations: polar ==> rectangular, rectangular ==> polar

· vector resolution

· vector addition

Precision, Accuracy, Significant Figures and rounding 

· An "about" number can not be multiplied by an "about" number to get a precise number.

· rules for significant figures

Percent Error
· calculate percent error

· follow error from original measurement through final calculations
Algebraic Formulas                               
The most important math skill is the ability to manipulate and solve algebraic formulas. Note that there is a difference between finding a general solution and evaluating or finding a specific solution. 
  
Finding a general solution to an algebraic expression. 

Ohm's law can serve as an example: V = IR [where V is voltage, I is current and R is the resistance in an electrical circuit.] 

In the listed form, Ohm's law is said to be "solved for V" because V stands alone on one side of the equal sign.  

We can solve this equation for I if we divide both sides of the equation by R; this yields I = V/R.  
We can also divide the original form by I to "solve for R":   R = V/I. 

A second example is the pendulum equation, [image: image2.png]2nLl/g



where T is the period of the pendulum, L is the length of the pendulum, and g is the acceleration due to gravity. The constant  g = 9.81 m/s2 near the surface of Earth. 

Let's say that we want to find how long a pendulum should be if we want it to swing back and forth once every 10.0 seconds. The "unknown variable" to be solved for is not by itself on one side of the equal sign. So we must first find the general solution for L, length.
Many students wish to plug in numbers immediately, without doing the algebraic solution first. These students error in two ways:

Most importantly, they miss out on the general pattern of the formula that helps them to understand the process. These students short-circuit the most powerful learning tool involved, and have difficulty progressing to more advanced levels of mathematical thinking. 
Secondly, many students see the square root sign and believe they must take a square root. In fact, algebra will reveal they must do just the opposite, and find the square of a number (the inverse of finding the square root). 

Let's follow the process. First, we must "isolate the radical". We can do this by dividing both sides of the equation by 2. This yields : [image: image4.png]



Then we square both sides, yielding [image: image6.png]|~
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   (Remember, when you square a term, square everything in that term)
Now we multiply both sides by g. 
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This is the general solution that yields the length of any pendulum for any swing period. 
  

Finding a specific solution to an algebraic formula. 

Now that we have the general solution, we simply plug in the numbers and calculate the answer to get the specific solution. 
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Checking our units, we see that the seconds-squared in the denominator cancels the seconds-squared in the numerator. This leaves meters, the correct units for length, as required. 

Now, using our calculators, we should find that length = 24.8 meters, a very long pendulum! This should not surprise us too much, however. Our general formula shows that the length of the pendulum is proportional to the square of the swing period, so the length of the pendulum grows much faster than the swing period.  Ten seconds is also a long time for a pendulum to swing back and forth just once.
Challenge: 
Students often ask a teacher, “What grade do I need on the next test to bring my test average to (desired grade)”?

Using the general formula for the average of a certain number of tests, calculate the grade (g) needed on the next test as a function of: 


n, the number of tests already taken


a, the average on those tests


d, the desired new average

g = f(n, a, d)


Hint: write out the equation to calculate the average, and then get g by itself.

Graphing Data                                      
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Fitting Lines and Curves to Data 



Graphs are often used to present information to other people. Scientists use them also to understand information for the first time. If there is a shape to the data when it is graphed, that shape tells the scientist 

· what type of mathematical formula the data represents,

· how much error is in the experiment, whether or not the experimental technique should be improved, and sometimes even how to improve it.
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Suppose the graph of electrical current (I) versus voltage (V) data looks like the following [figure 1]. 
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This data hints at being shaped like a broad upward sloping line if you sort of look at it from a distance [figure 2]. If you draw a line through the center of the broad line, you get the information that the scientist really wants. The position and slope of the center of the line shows the type of formula that represents the data. The breadth of the wide line is a measure of how much error is in the experiment.  (We will cover the concept and calculation of standard deviation.)
Whatever you do, DO NOT CONNECT THE DOTS! [We only connect the dots for that other purpose of graphs, presenting information, or when the data is both very precise and accurate, and when the curve or line that represents the data is smooth and continuous.] Rather, try to cover the most of the data with the thinnest possible "bar", then draw a line down the center of this bar. [See figures below.] 
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Fitting Curves Instead of Lines:

Many mathematical functions do not represent straight lines, but curved ones. Frequently this is obvious from the data.  The trick here is to make a smooth curved line through the data points, trying to minimize the distance between the data points and the curve.  It's basically the same procedure as for straight lines, except with a curved ruler.  Sometimes plastic rulers set on their edge can be bent to match the curve of the data and used to draw an approximations to the proper curve. 

 Why do scientists graph data and fit lines or curves to the data?  They do this because lines and curves can be formed also by graphing equations.  If you find the right equation that matches the data line or curve, that equation is a formula for that data.  You can use the formula instead of new experiments and data to predict future results.  That's where most of the formulas in scientific papers and in science books come from! 

Choosing Axes (plural of axis, not axe!)
 Rule #1:  In experiments, one variable often depends on another.  For example, the distance a car can go depends on how much gasoline is in the gas tank.  If there is more gas, the car can go farther.  Since the distance depends on the amount of gas, distance is called the “dependent variable”, and is graphed on the vertical or “y” axis.  Since the amount of gasoline in the gas tank is chosen freely by the experimenter, the amount of gas is called the “independent variable”, and is graphed on the horizontal or “x” axis. 

 Rule #2:  When time is one of the variables, it is normally chosen to be graphed on the horizontal or “x” axis.  The slope of the line or curve on the graph then corresponds to the speed (or rate of change) of the dependent variable. 

Choosing Scales 

 Rule #1:  Make each mark or block on one axis worth the same numerical value. If one block on the x-axis represents 0.1 , all the blocks on that axis should represent the same amount.  [Some students will equally space their data along the horizontal axis, regardless of numerical value differences, as when making a comparison bar graph.  In so doing, they destroy any ability to see mathematical relationships between the variables represented by the axes.  This makes the graph useless, and should be avoided.] 

 Rule #2:  The value of each block must be easily read in decimals, since most data is read that way.  If every 3 blocks represents a value of 40, it is difficult to make or read the graph.  Each block should represent either tenths, fifths, halves, or if necessary, quarters of a decimal value. 

 Rule #3:  Make the used portion of the graph as large as possible.  This provides more precision in making and reading the graph, which allows for great accuracy.  It is not necessary for the horizontal axis scale to be the same as the vertical axis scale.  
It may sometimes be beneficial to start each axis near the smallest data values, moving the graph origin well off the page.  This lets you make the used portion of the graph larger and easier to use.  You should include the origina when you know that the (0,0) is a valid data point, but other times, 0,0 will not be a logical value. (For example, when graphing body temperature vs. height.  No one is zero meters tall, and not many people survive that degree of hypothermia.)
  

Deriving Formulas from Graphs             
    The shape of the line or curve that best fits the data from an experiment determines the type of formula that can be made.  This formula will show the relationship between the variables on the x-axis and the  y-axis. 

    When the data fits a straight line, the formula follows the form y = mx + b, where y is the dependent variable from the vertical axis of your graph, x is the independent variable from the horizontal axis of your graph, m is the slope of the line, and b is the y value where the line crosses the y axis.  If b = 0, then the line will pass through the origin, and the relationship is called a direct proportion (if the slope is positive, going up from left to right). 

     The slope can be determined by seeing how much the y value changes for a corresponding change in x.  If the y value increases by 6 Volts for every increase in x of 2 degrees, the slope is found by dividing the change in y by the change in x.  For this example, the slope is 6V/2°C = 3V/°C, or 3 Volts per degree Celsius. In general, we use the formula: 

     slope = m = y/x 

where the Greek letter delta, , represents the change in the variable.  y represents how much the y variable changes for the corresponding change in x, x.  (Just as you read “%” as “percent”, read “Δ” as “change in”.)
     If a distance vs. time graph is made to represent the motion of an object moving at constant speed, a linear (straight-line), direct proportion graph is produced.  
Remember that a direct proportion from algebra means y=kx.  This is the same as y=mx+b, but in this case, b equals zero, and the slope “m” is replaced by “k”, the constant of proportionality.
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   The formula that matches this graph is found from y = mx.  Here, y represents distance and can be replaced with d.  Likewise x is replaced with t.  The slope, m, is therefore d/t, the definition of speed (v).  This yields the equation, d = vt. 

     If this activity is preceded by an activity such as in the previous section, where the line representing the distance vs. time graph would be found by doing the best possible match to scattered experimental data, then the entire process is complete.  Experimental data produces a graph, which leads to a formula, which can be checked by further experiments.

Non-linear formulas 
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 If the data do not easily fit to a straight line, the formula that represents the data must also be different.  There are two frequent forms. 

    One of these is represented by a graph where the y value grows faster with increasing x.  The graph curves upward from a straight-line orientation, with ever-increasing slope.  This general form is probably best fit by a polynomial equation of the form y = kxn, or by an exponential equation of the form y = kx. [k and n are constants.]   Note that in one case, the variable x is the base, while in the other, x is the exponent.
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 The second form is represented by a line that curves down from the y-axis and then out without ever touching or crossing the x-axis.  This is the graph of a formula where y decreases as x increases and vice versa.  This is known as an inverse relation, and is best fit by an equation of the form  [image: image18.png]


 .   

   
  "Pre-Calculus" or "Function Analysis" courses typically teach methods for making a more precise determination of the formulas represented by non-linear graphs.  This is beyond the scope of the Physics 1 curriculum.  Students are, however, expected to recognize data as representing exponential or inverse functions in general from the way that their graphs curve.

NOTE:  Microsoft Excel (and other spreadsheet programs such as Google Spreadsheet or OpenOffice Calc) are incredibly powerful and fast ways to identify the best formulas which fit your data.  Learn to enter data, plot graphs, and analyze trendlines (best-fit lines).  This will save you time and yield the most precise answers.  You should always take care, however, to look at the equations and ask yourself if you understand them and if they make sense.

Scientific Notation                                         
Scientific Notation is a way of writing numbers that makes understanding and using these numbers easier 

· when the numbers are very large,
· when the numbers are very small,
· when the numbers vary greatly in size,
· or when making estimates or mental calculations.

 The number 360,000 is the product of 36 x 10,000.  10,000 is ten times itself, four times,  or  10 x 10 x 10 x 10  or  104.  360, 000  is therefore  36 x 104.  This last way of expressing the number is the product of significant numerals and a place holder power of ten.  This is scientific notation. 

 In the standard form of scientific notation, exactly one numeral is to the left of the decimal point.  Since 36 is equal to 3.6 x 10,  then 360,000 is equal to 3.6 x 10 x 104,  or 3.6 x 105. 

 For other examples: 
1730  is equal to  1.73 x 103 
9,000,000  is equal to  9 x 106 
0.0041 is equal to 4.1 x 1/1000  or  4.1 x 10-3. 
  
Common Errors using Scientific Notation with Calculators 

 Students often make mistakes when using scientific notation with calculators because many calculators display numbers such as 4 x 103 without the 10.  Usually, a calculator display will show 4 x 103 as 4 03  or  4  03.  This leads to two different types of common errors. 

 The first occurs because many calculators do not display the 10, even though they calculate it.  Students who then multiply by 10 before using the exponent key will incorrectly make the number 10 times larger than it should be, because the calculator will automatically insert another exponent base of 10. 

 For example, 3.6 x 105 should be entered as [3] [.] [6] [EE][5], and is displayed as 3.6 05.   [3][.][6][x][1][0][EE][5] is interpreted by the calculator as 3.6 x 10 x 105, or 3.6 x 101+5,  or  3.6 x 106,  ten times too large. The second common error occurs when students confuse the [EE] key with the 
[yx] key.  It’s easy to see why this happens, since calculators usually display scientific notation in a form that looks like yx. 

 For example, 2000 is written in scientific notation as 2 x 103.  The calculator displays this a 2 03.  This looks like 23.  But 23 is equal to 2 x 2 x 2,  or  8.  And 8 does not equal 2000 !   This error is easily avoided if students use the [EE]  (or [EXP] on some calculators) key.
 Students who borrow unfamiliar calculators should always check the calculator protocol.  We can do this by checking how the calculator deals with a similar problem that is simple enough for us to solve in our heads.
Example: 3∙102 – 6 should equal 300 – 6 = 294.  If you get a different number, you’re using the calculator incorrectly.  The way of entering the problem into the calculator that yields a correct answer for the simple problem should also be correct for the more complicated problem.  If a method doesn’t solve the simple problem correctly, it won’t work for the real problem either!   Always use this simple procedure.  In this way, most “calculator errors” can be avoided. 
  
Dimensional Analysis                                   
       
Dimensional analysis is the process of doing a mathematical operation (such as multiplying or dividing) with units.   (This is the same basic concept as the factor-label method.)

The rules are the same as for algebraic variables. 

Therefore:   [image: image20.png]


     because m2 can be factored out of both the numerator and the denominator. 

[ kg = kilogram, m = meter, s = second ] 

    Dimensional analysis helps us to get the correct units at the end of a problem. 

    In Newton's 2nd Law, a = F/m, where a is the acceleration of an object, F is the applied force causing that acceleration, and m is the mass of the object.  The units of acceleration should be m/s2.  However, if we actually solve a problem where a force of 7.0 N is applied to a 2.0 kg object, we find that         

           a =F/m = 7.0 N/ 2.0 kg = 3.5 N/kg. 

    We wanted our units to be m/s2, but instead we have N/kg.  Are they the same?  Or have we revealed a mistake in our method? 

    If we remember the definition of a newton (N) of force, we know that 1 N = 1 kg m/s2. This implies that 3.5 N/kg is really the same as  3.5 [image: image22.png]kgX3
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.  The kg in the numerator cancels out the kg in the denominator, leaving the expected m/s2. Thus we end up with the correct units.  [We also get confirmation that our formula and method is likely to be correct as well.] 

Dimensional Analysis is also important when doing unit conversions, as in converting 12 km/h/s, representing an increase of speed by 12 kph every second,  to units of m/s2. Since 1000 m = 1 km and 
1 hour = 3600 seconds, multiplying by ([image: image24.png]


) doesn't change the value of the number, because ([image: image26.png]


) = 1.    

Also, ([image: image28.png]3200 -



) = 1.  
So:
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The units of km in both the numerator and denominator cancel, and so do the units for hours.  


Vector Addition in Two Dimensions            
  vector:  a quantity with both size ("magnitude" or amount) and direction. 
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If two cars collide, one moving at 60 kph and the other at 55 kph, is it a serious accident? The answer to this question does not depend only on their speeds, but also on their directions.  A head-on collision between these two cars would be serious indeed.  But if the 60 kph car overtakes the 55 kph car from the rear, it will only be a minor collision damaging the bumpers 
     To study the effects of physical quantities where direction is important, we need a mathematics of vectors.  Some of the basic rules for this will be outlined here. 

Coordinate Transformations 
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To describe point P in the diagram to the right, you could use 

Rectangular Coordinates: (x, y)     or

Polar Coordinates: (r= radius, θ = angle)
    
Transformation Equations:
     rectangular coordinates from polar coordinates
            x = r cosθ 
(θ = lower case Greek letter “theta”)
            y = r sinθ 
(angles may also be represented by “phi”, Φ)
      polar coordinates from rectangular coordinates 
            [image: image40.png]
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(Remember that tan-1 means “inverse tangent” or “arctangent”, NOT 1/tan )


Suppose a vector is given that is of length 10 and at an angle of 30o (counter-clockwise from the positive x-axis).  To make this example more real, lets assume that it is a force vector, representing a force of 10.0 N.  This force vector would push an object both upward and to the right.  How much upward and how much to the right?  To find out, we use the transformation equations for converting from polar to rectangular coordinates. 

How much to the right can be calculated from x = r cosθ, where r = 10.0 N and θ = 30o. 

Then  x = (10.0 N) cos(30o) = (10.0 N)(0.8660) = 8.66 N is the amount to the right. 

And from y = r sinθ, y = (10.0 N) sin(30o) = (10.0 N)(0.500) = 5.00 N is the amount upward. 

To understand both the purpose and procedure in the above example, I have mixed coordinate and vector notation.  Since the example deals with a force, the logical variable representing this should be F.  To label the corresponding parts of F in the x, y and r directions, we can use the coordinate labels as subscripts.  Thus we get Fx, Fy, and  Fr. 
    Then x = r cosθbecomes Fx = Fr cosθ. Calculating with these is exactly the same. Only the names of the variables have been changed. Likewise,, if you are working with velocity vectors, the corresponding transformation equation for velocity vectors becomes vx = vr cosθ.  
Vector Resolution 

Vector resolution is the process of breaking apart (resolving) a vector into perpendicular parts (usually “x” and “y” components).  In many cases, the process is identical to changing from polar to rectangular coordinates. 

Suppose we have a vector of length 8.0 at 30o. 
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The x-component of this vector can be found from x = r cosθ = 8cos30o = 8(.8660) = 6.9. 
The y-component of this vector can be found from y = r sinθ = 8sin30o = 8(.5000) = 4.0 
Thus a vector of length 8 at 30o can be resolved into an x-component vector of length 6.9 
and a y-component vector of length 4.0

Vector Addition 
  

Vector addition is the process of combining the effects of two or more vectors.  There are two common methods.  One method involves resolving all the vectors into their x and y components, adding and subtracting these components, and then transforming the answer back into polar coordinates.  This is the method to be discussed here.  [The second method involves a coordinate rotation, followed by use of the law of cosines, followed by a return rotation back to the original coordinates.] 

Suppose the vector from the above example is added to (or combined with) a vector with r = 6 at 45o.  Then this new vector can also be resolved into two component vectors, x2 and y2.  [The original vector’s components become x1 and y1.] 

Then x2 = r2 cosθ2 = 6cos45o = 4.2 and y2 = r2 sinθ2 = 4.2. 

If we now add the x-components, we will get the x-component of the "resultant".  This resultant, R, is the "vector sum" of the two original vectors. 
xR = x1 + x2 = 6.9 + 4.2 = 11.1 

Likewise for the y-components, 
yR = y1 + y2 = 4 + 4.2 = 8.2 

Converting this resultant to polar coordinates:
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 = 39° 
If these are all force vectors, then the resultant can be expressed as FNET = 14.2 N @ 39o.

Example Problem: 
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Add the two force vectors in the diagram to obtain their resultant vector.  First label the two vectors: let's name the 4.0 N vector number 1, and the other number 2, using these designations as subscripts throughout.  Then r1 = 4.0 N, and F1 = 4.0 N @ 50o. 

Then using the transformation equations: 
x1 = r1 cosθ = 4.0cos50o   = 2.57      y1 = r1 sinθ1 = 4.0sin50o = 3.06 
x2 = r2 cosθ2 = -5.0cos30o = -4.33     y2 = r2 sinθ2 = 5.0sin30o = 2.50        

xR = x1 + x2 
_________________________________________________________        
yR = y1 + y2 
                                        xR = -1.76                                         yR = 5.56 

Dropping the negatives and substituting xR and yR into the rectangular-to-polar transformation equations. 
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θ= tan-1(5.56/1.76) = 72o 

However, xR is negative and yR is positive, indicating that the resultant is in the second quadrant, where the reference angle q (measured counter-clockwise from the positive x-axis) is  = 180o - θ.  (At this point, making a diagram is a really good idea.)
This yields   = 180o - 72o = 108o,  and FNET = 5.83 N @ 108o. 
  
  
  

Precision, Accuracy, Significant Figures and Rounding 
                                                                                                                                                   Significant Figures 
 There are two types of numerals in ordinary numbers:  significant figures and place-holding zeros.  Place holding zeros are the zeros that go away when you convert to scientific notation. 

          34,000 = 3.4 x 104  0.0078 = 7.8 x 10-3 

 Not all zeros are place holding zeros,  some are significant, as in the zero in 307. Conversion to scientific notation yields 3.07 x 102.  All non-zero numerals are significant. 

 Examples of numbers with 2 significant figures: 

          48      .0032      5.7      5200 

  Examples of numbers with 5 significant figures: 

          23,789      54,043      3.9009      .0034021 

 Some numbers are considered to have an infinite number of significant figures, such as those that are part of exact formulas. 

        C = 2r              [image: image52.png]v =/2ad




In both of these expressions, the 2 represents an exact 2, with an infinite number of significant figures.  [These exact formula values are recognizable from variable values by the fact that they are not found from measurements.]  Other numbers are limited by the precision of the measurement method, or of the calculating device.  Slide rules were typically only accurate to about three significant figures, modern calculators usually display eight to ten significant figures.  [But the value displayed by the calculator is only as precise as the numbers used in the calculation.  An “about” number can not be multiplied by an “about” number to get an “exact” number, no matter what the calculator displays!] 
The significant figures possible with a measuring device depend on the size and marking of the scale. 

Rules for keeping the correct number of significant figures: 

1.     For addition and subtraction, the answer should be no more precise than the least precise value being added or subtracted. 

           45.387 
                  5.8  <== least precise number, to tenths place 
                    .092 
              +    .23 
                 51.5  <== answer to tenths place 

2.     For multiplication and division, the answer should have no more significant figures than the term with the least number of significant figures. 

          (4892 x 38 x 521)/389 = 250,000 
                         ^                         ^ 
                        2 places              2 places 

        For numbers such as 250,000, it is impossible to be sure whether or not the zeros are significant or not, except by context, or by denotation with either a bar below significant zeros, or by ending with a decimal point.  Non-zero numbers in parenthesis to the right of a decimal may not be significant. 

 Examples: 

 27                         
2 significant figures. 
      421                       
3 significant figures. 
      402                        
3 significant figures. 
      680                        
at least 2 significant figures, maybe 3, judge from context. 
      680.                      
3 significant figures, the decimal point shows that the zero is significant. 
      23.2                      
3 significant figures. 
      23.20                    
4 significant figures, this zero is unnecessary if not significant. 
      0.00048                
2 significant figures. 
      0.0005                  
1 significant figure. 
      4.82(527)             
3 significant figures, and the measurement precision exceeds its accuracy. 
  
 
Precision, Accuracy and Rounding 

 Many people think that these two terms mean the same thing, but they do not. 

 Precision is how fine of a measurement that the measuring instrument is marked off for.  A typical meter stick or metric ruler has millimeter marks as its smallest marking. A yard stick’s smallest marks may be 1/8 inches.  By estimating between the marks we can measure to half millimeters and to 1/16 of  an inch with these tools.  This is the limit of our precision with meter sticks and yard sticks.  But if we use these measuring tools in a sloppy fashion, say by letting the position of the end slip, the measurements will not be accurate to anywhere near a millimeter or an 1/8 of an inch. 

 Accuracy is how correct or true a measurement is.  If I estimate the width of a room to be 4 meters, and it is indeed exactly 4 meters wide, then I made an accurate, but not precise, measurement.  
If I let the ends slip on my meter stick, and measure the width of the room to be 4.2165 meters, that is a precise but inaccurate measurement.  Only if I am very careful, I can get an accuracy that equals my precision when using a meter stick. 

 This all becomes very important when considering the validity and economics of scientific research.  Often it is easy to make accurate measurements such as when using a ruler to measure a small rectangular block.  Several repeated measurements are likely to read the exact same value.  If you repeated the measurement a thousand times, you would achieve no greater accuracy.  You would only waste your time (and perhaps, your employer’s money). 

 But equally often we try to measure things that are difficult to measure accurately. An example might be the measuring of the length of a room with an ordinary ruler.  It is very difficult not to make errors of a couple of millimeters (or of an 1/8 inch or so) when moving the ruler to position after position.  We might try to make our final measurement to a fraction of a millimeter, but in fact, our answer maybe several centimeters off!  Now if we made the measurement 1000 times and averaged the results, we might improve our accuracy to only one or two centimeters.  Circumstance will determine whether or this repetition is worthwhile.  But accuracy can only be improved by repeating measurements and averaging only when the precision is finer than the accuracy. 

 Another example of when repeating and averaging measurements is when using a stopwatch.  The typical digital stopwatch is more precise than it is accurate.  The typical stopwatch displays with a precision of 1/100 of a second intervals.  But the human reaction time for starting and stopping the watch may be as much as 0.2 seconds.  Since the precision is 20 times finer than the accuracy, repeating and averaging can yield better accuracy. 

 When reporting data, it is important not to report more accuracy than you have. People who read your reports will judge your accuracy based on the number of significant figures in your data.  It is therefore imperative that you round off numbers to the last place value that is known to be accurate. 

 Calculations and conversions can never increase your accuracy, although in everyday life people often make this mistake.  A common example of this is to find 4 inch paint brushes labeled in metric as 101.6 mm.  Some calculator-happy person at the factory did a direct conversion and did not round off, as though every 4 inch paint brush on the shelf was exactly four inches wide to the nearest 1/254 of an inch (not a single spread or bent hair in the lot)!  In scientific literature, this would be a deception and a lie.  The proper thing to do would be to round off to the accuracy of the measurement.  In this case, they are 100 mm brushes. 

 A similar misrepresentation occurs with normal body temperature.  A healthy adult’s body temperature is about 37o Celsius, but varies substantially about this value. Even at two significant figures, this is an approximation.  A calculator conversion of 37o Celsius to Fahrenheit yields the familiar 98.6oF.  Magically, a number that was approximate to two significant figures becomes accurate to three significant figures simply by converting to a different measuring system?  I don’t think so!  [What would happen if you converted back and forth several times???]  To quote 98.6oF is a common, but dishonest, misrepresentation of the accuracy.  Normal body temperature is about 99oF (two significant figures). 
  
Percent Error

 If two students measure lengths, and each student has an error of 1 centimeter, it does not mean that the measurements were equally good (or that they should get the same grade).  Student A was measuring a 20 centimeter pencil, and was off by 1 cm/20cm = 0.05, or 5%.  Student B was measuring the width of a room which was 8.00 meters wide (800 centimeters).  Student B was off by 1cm/800cm = 0.00125, or 0.125%.  
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The accepted answer is usually the value that most scientists in the world agree with, due to the fact that repeated experiments have produced results close to that number.
Be aware that the percent error in a final calculation may not be the same as the percent error in an original measurement.  For example, if you measure the edge of a cube as 11 cm, but it was actually 10 cm, your percent error was 10%.

When you calculate the volume however, the calculation will yield (11cm)3, which is 1331 cm3.  The actual volume was (10cm)3, which is 1000. cm3.  This means that your percent error for volume was 33%.  This is because you multiplied the initial measurement (and its error) by itself three times, which more than tripled the error.  
You should make every initial measurement as accurately and precisely as possible, both as a matter of pride and to get the best final results you can.
(Solution to Challenge on previous page :��
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